Dust Collection and Valves Blog

Optimizing Dust Collector Installation and Operation: Comprehensive Guidelines for Success | Aerodyne

Posted by Tom Hobson on Jul 31, 2024 2:15:00 PM

Once you’ve selected and sized your dust collector to meet the specific needs of your application, it’s crucial to address several additional factors to ensure that this vital piece of equipment operates both efficiently and reliably. Whether you’re installing a baghouse, cartridge filter, cyclone, or a combination of these dust collection systems, meticulous attention to detail during both the pre-installation and post-installation phases can significantly impact performance and longevity. Here’s an expanded guide covering essential aspects to ensure a seamless installation and optimal operation of your dust collection system:

Sizing and Placement

  1. Verify Dimensions and Fit:

    • Detailed Measurements: Before proceeding with installation, meticulously recheck the overall dimensions of the dust collector. This includes not only the dust collector unit itself but also the space required for ancillary components such as fans, discharge valves, collection containers, and ductwork.
    • Planning for Future Needs: Consider future expansion or modification needs. If you anticipate additional equipment or changes in the system, ensure that the space you allocate can accommodate these future upgrades without requiring significant reconfiguration.
  2. Allow for Maintenance Access:

    • Routine Maintenance Space: Adequate space around the dust collector is essential for routine maintenance tasks such as changing filters, inspecting components, and performing necessary adjustments. This space should also facilitate safe and efficient work, reducing downtime and improving overall system reliability.
    • Emergency Access: Plan for easy access in case of emergencies. Quick access points can make it easier to address unexpected issues or system failures, minimizing potential operational disruptions.
  3. Consider Environmental Factors:

    • Ventilation: Ensure that the installation location has adequate ventilation to prevent overheating and to maintain the effectiveness of the dust collection system. Poor ventilation can lead to decreased performance and increased wear on equipment.
    • Temperature and Humidity Control: Evaluate and manage environmental conditions, including temperature and humidity. Extreme temperatures or high humidity levels can affect the performance and lifespan of the dust collector, potentially causing operational problems or premature equipment failure.
  4. Space for System Components:

    • Clearances for Components: Account for the space needed for all system components, including bracing, supports, and controls. Adequate clearance helps prevent interference with system operations and facilitates easier installation and future maintenance tasks.
    • Accessibility for Ductwork: Ensure that there is sufficient space for installing and accessing ductwork. Proper ductwork design and installation are critical for maintaining efficient airflow and preventing dust buildup within the system.

Discharge Airlock Valve

  1. Select the Appropriate Valve:

    • Compatibility with Dust Type: Choose a valve that is suited to handle the specific type of dust being collected. For example, abrasive dust may require a valve with durable components, while sticky dust might need a valve designed to prevent clogging.
    • Airlock Efficiency: The valve should provide a reliable airlock to prevent pressure drops within the system. Proper airlock functionality ensures that dust is efficiently removed from the collector without disrupting the overall system pressure.
  2. Regular Inspection for Wear and Leaks:

    • Check for Component Wear: Regularly inspect the valve for signs of wear and tear. Components such as flanges, shafts, and seals should be checked for damage or degradation, as these can lead to leaks and reduced efficiency.
    • Leak Detection: Implement routine checks for leaks around the valve. Addressing leaks promptly can prevent reduced system performance and minimize potential operational disruptions.
  3. Evaluate Valve Options:

    • Automatic vs. Manual: Consider the benefits of automatic valves over manual ones. Automatic valves can provide power and maintenance savings and enhance the consistency of dust removal. They can also integrate with automated control systems for improved efficiency.
    • Power and Maintenance Costs: Analyze the total cost of ownership, including power consumption and maintenance requirements. Automatic valves may offer long-term cost benefits by reducing manual intervention and optimizing performance.
  4. Integration with Control Systems

    • Automation and Monitoring: Integrate the discharge valve with your control systems for real-time monitoring and performance management. Automated systems can provide valuable insights into valve operation, detect issues early, and facilitate proactive maintenance.
    • Data Collection and Analysis: Utilize data collected from control systems to analyze valve performance and identify trends. This information can help in making informed decisions about maintenance schedules and system adjustments.

While these considerations might seem fundamental, neglecting them can lead to significant challenges and increased costs. Addressing the dimensions, placement, and operational aspects of the dust collector and its components with careful planning and attention to detail can enhance the efficiency and longevity of your dust collection system. By prioritizing proper installation, maintenance, and monitoring, you can avoid common pitfalls, reduce downtime, and ensure that your dust collection system remains a reliable and effective component of your process equipment.

Investing time and effort into these preparatory steps will pay off in the form of a smoother installation process, improved system performance, and reduced long-term costs


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: airlocks valve, Dust Efficiency Clinic, dust collection system

Ensuring Effective Dust Collection System Management | Aerodyne

Posted by Tom Hobson on Jun 28, 2024 10:15:00 AM

A common problem that the dust collection industry faces is that once a dust collection system is installed, the records of the system are often lost or forgotten. Typically, the engineer who designed the system moves to another position or eventually retires, and the details are not passed along to the next person. This lack of continuity can lead to significant challenges when issues develop.

The Challenge of Lost Knowledge

When an issue arises, the new engineer responsible for fixing the problem often doesn't know what the unit was originally designed for or many other critical details. This knowledge gap can complicate troubleshooting and maintenance efforts. Sometimes, the equipment manufacturer has the specifications available, but these records are not always easy to locate. As a result, when experts are called in to help resolve the issue, the system often has to be reverse-engineered.

The Cost of Reverse Engineering

Reverse engineering a dust collection system means dedicating additional time and resources to figure out the original design. This process is not only time-consuming but also carries no guarantee that the recreated design will match the original specifications. Any discrepancies can lead to suboptimal system performance and increased operational costs.

The Impact of Undocumented Changes

Another common issue is that changes made to dust collection equipment are not always documented. Modifications can include adding or removing pickup points, altering ductwork, changing fans, or updating filters. All these adjustments can significantly affect the system's performance. Without proper documentation, these changes can create confusion and hinder effective problem-solving when issues arise.

Best Practices for Documentation

To mitigate these problems, Aerodyne suggests maintaining a comprehensive file that reflects the current design of the dust collection system. This file should include:

  • Up-to-date drawings
  • Airflow measurements
  • Pressure drop data
  • Equipment specifications

It's crucial that this file is accessible to multiple people within the facility. This accessibility ensures that if someone leaves or transitions to a different role, the information is not lost. A centralized, easily accessible record-keeping system can significantly improve the efficiency of maintenance and troubleshooting processes.

Implementing a Documentation Strategy

Here are some practical steps to ensure your dust collection system documentation remains current and accessible:

  1. Establish a Documentation Protocol: Develop a standardized procedure for documenting all aspects of your dust collection system. This should include creating detailed records of any changes made to the system.
  2. Regular Updates: Schedule regular reviews of the documentation to ensure it reflects the current system configuration. Any modifications should be promptly added to the records.
  3. Digital Record Keeping: Utilize digital tools and software to store and organize documentation. Digital records are easier to update, search, and share compared to physical files.
  4. Training and Awareness: Train staff on the importance of maintaining accurate records and how to access the documentation. Ensure that multiple team members are familiar with the documentation process and location.
  5. Backup Systems: Implement backup systems for digital records to prevent data loss. Regularly back up files to secure locations.

Conclusion

Effective documentation is vital for the smooth operation and maintenance of dust collection systems. By keeping detailed and accessible records, facilities can avoid the pitfalls of lost knowledge and undocumented changes. This proactive approach ensures that when issues arise, they can be addressed swiftly and accurately, minimizing downtime and maintaining optimal system performance.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: Dust Efficiency Clinic, dust collector records keeping, dust collection system

Revolutionizing Dust Collection: Aerodyne Vacu-Valve vs. Rotary Airlocks | Aerodyne

Posted by Tom Hobson on May 31, 2024 4:42:29 PM

In industrial settings, dust collection systems are vital for maintaining clean and safe work environments. Most dust collectors are equipped with a motor-driven rotary airlock valve that efficiently empties contents from the hoppers. Rotary valves have been a staple in dust collection technology for many years due to their reliability and effectiveness in managing dust discharge. They offer certain advantages, such as the ability to handle a continuous flow of dust and debris. However, these traditional systems come with several significant drawbacks.

One of the main challenges with rotary valves is the difficulty and time-consuming nature of their maintenance. Cleaning rotary valves is a cumbersome process that often requires system downtime, which can disrupt operations and lead to productivity losses. Additionally, rotary valves operate continuously, regardless of the presence of dust. This constant operation results in unnecessary electricity consumption, leading to increased energy costs.

Moreover, the continuous running of these valves accelerates their wear and tear. Rotary valves can wear out rapidly, especially when handling abrasive materials, leading to frequent and costly repairs or replacements. The need for regular maintenance and replacement parts adds to the overall operating costs, making rotary valves less economical over time.

To address these issues, Aerodyne has developed a highly cost-effective alternative: the Vacu-Valve® Trickle Valve System. This innovative solution leverages the principles of negative pressure within the material handling system to function efficiently without the drawbacks associated with traditional rotary valves.

The Aerodyne Vacu-Valve® Trickle Valve

The Vacu-Valve operates using a simple yet effective mechanism. It features a duckbill sleeve that remains closed under the system's negative pressure. As dust or material accumulates, the pressure forces the sleeve open, allowing the contents to discharge smoothly. Once the material has emptied, the negative pressure immediately reseals the duckbill sleeve, preventing any backflow or leakage. This process repeats as necessary, ensuring efficient and controlled discharge of dust and materials.

One of the standout features of the Vacu-Valve system is its low maintenance requirements. Unlike rotary valves, the Vacu-Valve requires no lubrication, power, or complex controls. This reduces the need for regular maintenance and eliminates the associated downtime and costs. The absence of moving parts that require constant operation means there is significantly less wear and tear, further extending the lifespan of the system.

The Vacu-Valve system is also highly versatile, with a range of duckbill sleeve options designed for specific applications. Whether dealing with fine dust, coarse particles, or abrasive materials, there is a Vacu-Valve configuration to suit the need. Additionally, the Vacu-Valve is available in both open and closed designs, offering flexibility to accommodate various operational requirements.

In summary, the Aerodyne Vacu-Valve® Trickle Valve System represents a significant advancement in dust collection technology. By eliminating the need for continuous operation, reducing maintenance demands, and offering adaptable solutions for different materials, the Vacu-Valve provides a cost-effective and efficient alternative to traditional rotary airlock valves. For industries looking to enhance their dust collection systems, the Vacu-Valve offers a reliable, economical, and low-maintenance solution.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: rotary valves, vacu-valve, dust collection system

Horizontal and High-Efficiency Cyclone | Aerodyne

Posted by Tom Hobson on May 30, 2023 11:25:05 AM

One challenge to designing a manufacturing process is choosing an effective dust collection system that will fit the limited available plant space. Low ceilings pose a challenge for high-efficiency cyclones due to their long-tapered bodies. In many cases, the dust collector must be placed outdoors or partially protruding through the roof. This can be an unfavorable arrangement.

Counter-cyclonic dust collectors, such as the Aerodyne SplitStream™ Dust Collector, use a secondary air stream that directs material toward the collection hopper, and may be installed horizontally with virtually no loss of efficiency.

As the dust-laden gas stream is drawn into the collector, it passes through a stationary spinner which imparts a rotational flow and forces particulate toward the walls of the collector. A powerful secondary air stream is injected into a manifold where it enters the separation chamber through a series of nozzles. The secondary air stream intercepts the collected particulate and carries it to the hopper. Because this design does not rely on gravity to bring the dust to the hopper like conventional cyclones, its operational efficiency is not affected by horizontal installation.

 

This type of dust collector may be suspended from a ceiling, conserving valuable space on the manufacturing floor. It also saves money compared to cutting a hole through the roof or building a site for the dust collector outdoors. Outdoor installation may also encourage condensation that can shorten service life and reduce efficiency. Finally, horizontal, high-efficiency cyclones may be maintained without the need for tall scaffolding that can pose a safety hazard to workers.

 


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: dust collector, horizontal cyclone, dust collection system

What kind of dust collectors are there? | Aerodyne

Posted by Tom Hobson on Apr 27, 2023 2:15:00 PM

For the past several decades, industrial facilities in a wide variety of industries have deployed dust collection systems as part of its manufacturing process. As technology and filtration techniques have improved, these systems have changed and evolved to become more sophisticated, and at times complex.

Dust collectors are used in many industries to improve air quality and remove harmful particles from the air. There are several types of dust collectors that are commonly used in industrial and commercial settings. Here are some of the most common types:

Baghouses

A baghouse consists of a vessel with many filters (bags) inside. The bags are located in rows and mounted on a tube sheet. The tube sheet separates the dirty air from the clean air. Dirty air enters the bag house near the bottom. The dirty air is forced through porous bags which have a built-up filter cake. Clean air goes through the filter/bag and leaves through the top of the vessel, while the dust falls down to be discharged through the hopper.

Cartridge Collectors

Cartridge collectors operate similar to baghouses except they use pleated cartridges to provide much higher surface areas in smaller filter volume than bag filters.  This means they are much smaller than baghouse for the same air volume.  However, the cartridges have lower temperature limits and can plug easily. They are used in the following applications: grinding, sandblasting, welding fumes, laser and plasma cutting fumes, graphite, pharmaceutical powders, acid fine chemical powders, and more. When dusts are difficult to handle, hygroscopic, or high temperature, a baghouse is a better alternative for trouble free dust collection and longer filter life.

 

Cyclone

The cyclone is the simplest design of all dust collectors. It is a mechanical way to remove dust from an air stream. The cyclone uses centrifugal and gravitational forces to force the dust to the vessel walls and then let gravity collect it. The cyclone requires only a discharge valve and fan for operation. Cyclones require very little maintenance. Cyclones are often used as prefilters for other dust collectors.  They can provide high removal efficiencies of larger dust particles, thereby decreasing the loading on the main dust collector, this can increase total removal efficiency, decrease system maintenance and extend equipment life, not to mention collect material before contamination.

ESP (Electro Static Precipitator)

ESPs use high voltage to electrically charge particulate in the air. The charged particulate is collected on charged plates as the air stream passes. ESPs use large amounts of electricity and can get collection efficiencies as high as 99% for many applications. ESPs provide good removal of sub-micron particulate. ESP are expensive and require high operating and maintenance costs.

Wet Scrubbers


Wet Scrubbers are available in a variety of designs including cyclones, venturi, packed towers, cloud chambers and fluidized beds. Wet scrubbers spray water into the dirty airstream allowing dust and water droplets to contact, thereby making them easier to collect.  Wet scrubbers have high removal efficiency but can be expensive to operate and treat the slurry leaving. The wet cyclone is just like a regular cyclone except that they spray water in the cyclone.

 

 


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: cyclone, dust collector, dust collection system

What Is A Dust Collector? | Aerodyne

Posted by Tom Hobson on Mar 30, 2023 1:15:00 PM

A dust collector is a mechanical device used to remove dust from an air stream. The dust collection system consists of a hood (or air collection device), the dust collector, the motive fan and any inter-connecting ductwork, stack, dampers, controls, etc. Aerodyne Environmental manufactures cyclone dust collectors and the dust handling valves (airlocks) mounted on the dust collectors. 

To properly specify a dust collector, certain information is required:

  1. Dust collector typeCyclone, baghouse, etc.
  2. Airflow (CFM) – The amount of air going through the collector. The airflow is critical to sizing a dust collector and without airflow no collector can be sized.
  3. Temperature, pressure, humidity of airflow – Higher temperature, pressure, and humidity will affect collector materials of construction, size and may require special valves and controls.
  4. Dust description* – The better you describe your dust the better your dust collector will operate. Example a sticky dust will bind a cartridge collector which will require frequent cleaning and/or replacing of the cartridges. While cyclones are well suited for sticky particulate.

    a. SG or density of the dust/particulate – the greater the density, the easier it is to remove.

    b. Dust/particulate loading (lbs/hr) – amount of dust.

    c. Particulate size distribution (microns) – how big is the dust (smaller dust is removed in baghouse but larger dusts can be effectively removed in a cyclone).

    d. Fibrous, abrasive, hydroscopic, granular, tendency to bridge, sticky, etc. (dust with these properties can wreck havoc on baghouses and cartridge collectors.
  5. Removal efficiency required – The greater the removal efficiency, the more expensive the design will be.
  6. Materials of construction required – from carbon steel to stainless and high alloy steel, the materials of construction affects price. Process conditions (temperature, gas/air composition, dust composition and humidity) can require specific materials of construction. (Example: salt in a humid environment requires stainless steel to prevent corrosion.)

    *If unknown, a pilot unit can often be rented from the manufacturer to test on your existing system.

To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: dust collector, Cyclone Pre-Filter, dust collection system

Dust Collection Systems Maintenance: The Cyclones and Filter Collectors | Aerodyne

Posted by Tom Hobson on Feb 28, 2023 2:15:00 PM

Dust collection systems pick up dust generated by process equipment and move it away for disposal or to be recycled. They use hoods to gather the air around the dust generation equipment. The dusty air is then sent to the dust collection equipment through ductwork. The dust collection equipment often consists of a pre-filter to help collect the dust followed by the main dust collector. An exhaust fan is often at the end and it powers the system by pulling the air through each of these components.

Cyclones

Cyclone dust collectors are very dependent on the airflow that is going through them. Cyclone pressure drops are based on many factors, but the two most important are the geometry of the cyclone and the volumetric airflow through the cyclone. The pressure drop formula of a cyclone has the square of the volumetric airflow through the cyclone. So, doubling the airflow will quadruple the pressure drop (2x ACFM leads to 4x dp). If your airflow changes through the system, the pressure drop through your cyclone can fluctuate. 

Since dust collection system static requirements are all related, the exhaust fan will find its operating condition naturally. However, if the airflow decreases, then the removal efficiency of cyclone will decrease too. This means the cyclone will remove less of the finer dust particles, thereby sending them on to the filters. That will cause greater dust loading for the filters, which could increase the frequency of cleaning (more plant air usage, greater filter wear, etc.) and decrease the lifespan of the filters.

Filter Collectors

Filter collectors would actually benefit from lower airflow. The lower airflow would decrease the air to cloth ratio, which can extend the life of the filters. However, as described in the rest of this paper, the overall performance of the dust collector system will decrease. And if the system has a cyclone dust collector, the benefits gained by a lower a/c ratio could be counteracted by higher dust loading coming through the cyclone.

Higher airflow will increase the air to cloth ratio and could put more strain on the filters. The velocity of the air going through the filter could increase enough that holes in the filters could develop, thereby causing dust to bypass the filters.

However, filter collectors have a pretty good range of airflows they can handle without significant effect on the system. Unlike cyclones, the pressure drop in a filter is based less on airflow and more on the filter pack on them.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: Cyclone Pre-Filter, Dust Collector filters, dust collection system

Exhaust Fans: The Motive Force of a Dust Collection System | Aerodyne

Posted by Tom Hobson on Jan 31, 2023 1:30:00 PM

The exhaust fan provides the motive force for the dust collection system. The exhaust fan has a performance curve that defines how much airflow it will pull at a certain static pressure. When you turn on a fan, it will ramp up and increase the airflow until reaching the maximum static pressure it can provide.

As most exhaust fans are centrifugal fans, the curves show that the lower the airflow, the higher the static pressure. This means that as the airflow increases the static pressure decreases. When the airflow in a system changes, this means the static pressure required in the system has changed, so the system performance has changed per the exhaust fan curve.

When The Airflow Is Higher

With higher airflow, the operating point will move further right on the fan curve. Generally, this won’t affect the fan much. The efficiency of the fan could change, but the overall affect would be minimal. If this change takes the fan off its curve, then you could develop operational issues with the fan. However, this isn’t a common occurrence.

When The Airflow Drops

A much greater issue is when the airflow drops. This moves the operational point to the left of the curve. Most centrifugal curves have the static pressure of the fan level out as the airflow decreases. If you get to this flat part of the curve, the fan could provide unstable performance, where the airflow jumps around. For example, the fan curve can show that between 0 ACFM and 800 ACFM the fan provides 12” W.C. This means when you get into this area your airflow can fluctuate anywhere from 0 to 800 ACFM. This can cause issues throughout your system and isn’t a good place on the curve for the fan to operate.

When you are operating a dust collection system it is imperative that you maintain the airflow in the system within design criteria. If it increases too much it can cause added expenses, maintenance, and product loss. If it decreases too much it will let dust escape, lower removal efficiency, and possibly create dangerous environments. So, we highly recommend regular, if not continuous, monitoring of your process airflows to be sure you’re operating within design parameter.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: exhaust fan, GPC Cyclone, dust collection system

The Important of Ductwork in Dust Collection System | Aerodyne

Posted by Tom Hobson on Dec 28, 2022 2:30:00 PM

Dust collection systems pick up dust generated by process equipment and move it away for disposal or to be recycled. They use hoods to gather the air around the dust generation equipment. The dusty air is then sent to the dust collection equipment through ductwork. The dust collection equipment often consists of a pre-filter to help collect the dust followed by the main dust collector. An exhaust fan is often at the end and it powers the system by pulling the air through each of these components.

Dust Collector System with Ductwork

The first stage of the dust collection system are the collection hoods. Well-designed hoods are engineered so the dust generated by the equipment can be collected with the least amount of airflow possible. Once the dust leaves the pickup hoods, it travels through ductwork until it reaches the dust collector(s). In a well-designed dust collector system, the ductwork will be sized so that the airflow has enough velocity to keep the dust from falling out in the ductwork. Usually, the airflow needs to be between 4000 and 5500 FPM to keep dust from falling out. So, if the airflow in the system changes from its designed conditions the velocity in the ductwork will also change.

When The Airflow Is Too High

With too high of an airflow, the air velocity in the ductwork will increase. This will cause increased pressure drop in the system but it will also increase the erosion of the ductwork walls by particles making contact with the walls. Increased erosion of the duct walls will cause holes to develop, which will further affect the airflow in the system

When The Airflow Is Too Low

With too low of an airflow, the air velocity in the ductwork will decrease and could allow dust to begin dropping out and building up within the ductwork. This can cause the ductwork to become heavy and fall. If the dust is explosive, this dust can cause or feed an explosion and is a safety risk. If enough dust piles up, it could end up plugging the ductwork, thereby cutting off airflow through the ductwork.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: Ductwork, GPC Cyclone, dust collection system

The Impact of Well-Designed Hoods in Dust Collection System | Aerodyne

Posted by Tom Hobson on Nov 18, 2022 1:15:00 PM

Dust collection systems pick up dust generated by process equipment and move it away for disposal or to be recycled. They use hoods to gather the air around the dust generation equipment. The dusty air is then sent to the dust collection equipment through ductwork. The dust collection equipment often consists of a pre-filter to help collect the dust followed by the main dust collector. An exhaust fan is often at the end and it powers the system by pulling the air through each of these components.

Well-Designed Hoods

The first stage of the dust collection system are the collection hoods. Well-designed hoods are engineered so the dust generated by the equipment can be collected with the least amount of airflow possible. The amount of airflow required by a hood is dependent on a variety of factors including, how the dust is generated, distance of the hood to the equipment, and the size and shape of the hood. How the dust is being generated and the distance of the hood from the equipment both affect the minimum velocity the air needs in the hood. While the size and shape of the hood affects the total airflow that hood requires for proper dust collection (velocity x area= airflow).

A properly designed dust collection system will have enough velocity in the hood to collect the dust being generated. The exhaust fan will have enough static pressure to keep this velocity after all the pressure drops in the system (ductwork, pre-filter and dust collector). Now, if for some reason the airflow is not at the design velocity at the hood, then the dust collection from the process will be affected.

When The Airflow Is Too High

If there is too high of an airflow in the system, the airflow through the hood will also be too high. This means that the velocity through the hood is also higher than designed. The greater airflow (velocity) will mean the hood will have greater suction around the equipment. While the hood will pick up the nuisance dust that you want collected, it could also collect material that you want to stay on a conveyor, table, etc. This will cause higher dust loading in the system. It will also mean that the dust collector is collecting valuable material that should be used in the process or is product. This will increase the waste of the system, thereby increasing costs. The greater dust loading in the system will also cause more maintenance in the ductwork and dust collector.

When The Airflow Is Too Low

If there is too low of an airflow in the system, then the airflow through the hood will also be too low. This means that the velocity through the hood is lower. This will allow dust that is being generated by the process equipment to escape the dust collection system by not being collected in the first place. The dust that escapes the dust collection system will settle on the surrounding equipment. This will cause increased housekeeping in the plant to prevent dust buildup. Dust buildup could become a fire and explosion hazard and/or cause increased maintenance on plant equipment.

Monitoring the airflow in the dust collection system will allow you to make sure the airflow at the pickup hoods is correct which will prevent dust from escaping from the system which would cause additional issues or too much material being collected which would cause loss of profits.


To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: GPC Cyclone, hoods, dust collection system

Aerodyne Environmental: Home of the Horizontal Cyclone and  Vacu-Valve® Airlock Valve

Inspired To Be Different.

At Aerodyne, we choose to take a different approach to collecting dust and handling materials. Our cyclones are unique in design to address common issues such as problematic dusts and space constraints. Our airlocks are chosen to fit your specific application instead of hastily installing traditional equipment options. We believe that when we see things differently, we can solve problems effectively. That's why so many people turn to us for help in solving their tough dust problems.

Subscribe Here!

Recent Posts

Posts by topics

See all