Dust Collection and Valves Blog

Top 5 Applications Where Standard Dust Collectors Fail | Aerodyne

Posted by Tom Hobson on May 31, 2022 1:30:00 PM

Dust collection is often one step in a series of steps used to treat an airstream or process stream. Often times the airstream will require heating or cooling, gas scrubbing, and/or dilution of gas stream, etc. All of these processes usually require additional equipment to work in tandem with the basic dust collector. Adding additional equipment is not only expensive, but it consumes floor space and often purchasing new equipment will get overlooked simply due to lack of space to accommodate it.

Standard dust collectors often have operational issues with abrasive, sticky, and fibrous dusts. Standard pre-filters for these applications can have high maintenance costs, however without a pre-filter the particulate will often foul or erode the process equipment. Sticky dust will plug filters and foul heat exchangers. Abrasive dust will prematurely wear heat exchangers and dust collectors. Fibrous dust will foul in tight areas. Wet scrubber applications can experience higher water usage when the particulate amount increases.

There are 5 applications that utilize standard dust collectors:

1. Temperature Adjustment of an Airstream

The SplitStream cyclone uses a secondary airstream to convey the dust from the walls of the cyclone down into the hopper for dust collection. The secondary airstream can be used to heat or cool the primary airstream before it is vented outside or fed to other process equipment. The two airstreams will combine in the cyclone and they will leave together at a uniform temperature.

2. Abrasive Dust

Abrasive dust will shorten process equipment’s life span by eroding away the walls of the equipment. Due to the design of a standard cyclone, the lifespan is shortened quicker. A standard cyclone is designed so that the dust is conveyed to the outside of the cyclone, where it hits the walls and fall into the hopper. Abrasive dust will also wear out filter bags, the inlet distributor, tube sheets, and the baghouse walls.

3. Sticky and Hygroscopic Dust

Sticky and hygroscopic dust can also cause issues with standard dust collectors and cyclones. Sticky dust will accumulate in any dead zones in standard cyclone. This causes a gradual reduction in the internal volume of the cyclone, and changes the geometry of the cyclone, which could cause a change in the removal efficiency of the unit.

4. Fibrous Dust

Fibrous dust causes many issues for standard dust collectors. The fibrous dust floats in the airstream and often will be re-entrained back in to the air exiting the cyclone. In baghouses and cartridge collectors, fibrous dust when cleaned off the filters, will float in the dirty air plenum. This increases the concentration of the dust in the unit. The dust will not settle into the hopper to be removed from the system. Overtime this will cause the dirty air plenum to plug up, thereby plugging up the dust collector.

5. Oxygen Reduction

Many dusts are explosive and with growing scrutiny of new and existing operations by inspectors and insurance companies, existing processes are being found that require explosion protection. One way of protecting from explosions is to prevent an explosion from ever occurring by lowering the oxygen level of the system below the Lower Explosive Level (LEL). This is done by adding an inert gas such as nitrogen to decrease the concentration of oxygen.

Aerodyne’s SplitStream cyclone offers a strong advantage over standard dust collectors. Coupled with its unique design and its ability to be configured multiple ways, it is the ideal dust collection solution. Whether it is using it as a pre-filter for an existing system or replacing a faulty dust collector in a plant, the SplitStream will reduce maintenance, increase efficiencies, and improve the overall process.


To learn more about which dust collector, please contact our experts at 440-543-7400 or visit our website: www.dustcollectorhq.com.



To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: pre-filter cyclone, GPC Cyclone, dust collection system efficiency, standard dust

Top 5 Reasons to Use a Cyclone Before a Baghouse or Cartridge Collector | Aerodyne

Posted by Tom Hobson on Apr 20, 2022 1:30:00 PM

Most industrial dust collection systems use a baghouse or a cartridge collector. Whether your baghouse or cartridge collector is 50 CFM or 100,000 CFM, there are advantages to putting a cyclone before the baghouse or cartridge collector. Here are 5 advantages to utilizing a cyclone in a dust collection system.

  1. Increased Removal Efficiencies

Cyclones will increase your total dust collection efficiency when added before an existing baghouse. Cyclones remove the larger, coarser dust before the particulate reaches the baghouse. This helps to lighten the load on filters, which results in less dust in the airstream and overall higher removal efficiency for the whole system.

  1. Longer Filter Life

Baghouses and cartridge collectors require compressed air to knock off the dust. The use of the compressed air forces the bag to expand around its cages during high pressure bursts. The constant expansion of the bag causes it to wear out at a faster rate. Putting a cyclone ahead of the baghouse will remove most of the larger dust from the baghouse, thereby minimizing the amount of dust coming into the baghouse or cartridge collector.

  1. Recovery of Product

If the dust being collected is valuable (such as gold or silver) or needs to be/can be reused, simply using a baghouse or cartridge collector will cause the material to get lost on the filters. A cyclone doesn’t require any filters and all the recovered material will eventually be removed through the dust discharge valve.

  1. Easy Maintenance

Baghouses and cartridge collectors are extremely high maintenance. They require confined space entry to remove and replace the bags. Furthermore, bag replacement can be a time consuming process. Cyclones, however, require very little maintenance. At most, plant engineers have to observe the pressure drop every so often, and inspect the walls of the cyclone to insure that is has not worn down from the application.

  1. Allows Baghouses to Operate in Difficult Applications

Bags and cartridges are not well suited for fibrous, sticky, or hydroscopic dust. Cyclones perform in these applications and prevent the material from reaching the filters. Placing a cyclone in front of a baghouse or cartridge will help prevent time and money spent on repairing or replacing the filter, and ultimately will lengthen the life of the filter.


To learn more about which dust collector, please contact our experts at 440-543-7400 or visit our website: www.dustcollectorhq.com.



To improve efficiency and safety, there is no substitute for an on-site inspection by an experienced expert. Click below to start with a free 20-minute phone consultation by clicking the button.

Free Consultation

Read More

Topics: pre-filter cyclone, GPC Cyclone, dust collection system efficiency

Why Install Dust Collectors Even If It Is Not Required | Aerodyne

Posted by Tom Hobson on Feb 25, 2019 10:30:00 AM

The most basic reason to install dust collectors is because the EPA, OSHA or other regulatory agency requires you to.  However there are other reasons to install a dust collector even if you aren’t required to.

  1. Health and safety
    • Dust can cause health issues, even if the material isn’t a carcinogen or sub-micron. Dusty air can cause issues breathing, allergies, etc.  All of this can cause operators to be sick more often or want a new job.  This can cause increased operating expenses and less efficiency as you have to cover for absences or have to train a replacement.   Small local dust collectors can help clean the air around operators.
    • Some dust is explosive, and the regulatory agencies are requiring that you test the dust to make sure it isn’t. Even if they haven’t gotten around to it yet, a fire or explosion will cause property damage and possibly injury to employees.
  2. Maintenance – Dust will get into mechanical equipment and cause increased wear on them. This increases the maintenance on the equipment, lower productivity and increase operational expenses.  Installing a local dust collector can minimize the dust getting to the surrounding equipment, thereby extending their life.  While there are many factors that affect when equipment needs maintenance, minimizing dust in the air will definitely help extend the time between maintenance.
  3. Recycling of material – Local dust collection can help capture product / raw material dust before it is contaminated by other material. This dust can then be reused or recycled, thereby lowering the cost of your process.  Cyclonic dust collectors are especially good at collecting un-contaminated material since they have no filters to retain dusts and can be cleaned out.
  4. Environmental responsibility – Local dust collection will help you keep fugitive dust from escaping the building and into the environment. While rain and wind often deposit dust back on the ground, the more dust escaping will cause the air to be dirtier. This could cause smell or dust clouds that neighbors will dislike.  Beyond being a good direct neighbor, you may just have a goal to be a better inhabitant on the earth.
  5. Higher morale – A cleaner, healthier environment will help your employees be happier at work. If they aren’t irritated from dusty air, there is a better chance they will enjoy work better and be more productive.  This will allow you to produce more at a lower cost.  And the company will make more money allowing the employees to get better raises.

To learn more about which dust collector, please contact our experts at 440-543-7400 or click on the button below to get our Whitepaper: 4 Potential Dangers to Collectors! How Cyclone Pre-Filters Can Help!

Get Whitepaper Now 

Read More

Topics: dust collector, GPC Cyclone, dust collection system efficiency, clamp together ductwork

How Important is the Airflow in a Dust Collection System

Posted by Tom Hobson on Feb 21, 2019 9:27:16 AM

 

The airflow in a dust collection system is extremely important, since the air collected at the hoods is removing the dust from the affected areas.  This air is then sent to the dust collector to remove the dust from it.  While it is always desirable to use the least amount of air as possible in your dust collection system, you must have enough air so that it is actually doing the job it is meant to.   If not enough air is going through the system, you will not capture all the dust from the pickup areas, thereby allowing dust to escape into the facility, cause health / nuisance issues and/or fire hazards.  If the airflow is too high, you could be picking up product/ raw materials, wasting energy and increasing maintenance issues.

There are many reasons that the airflow through a dust collection system can change.  A few of them include:

  • Environmental changes – temperature, humidity, etc.
  • Changes in the system – such as opening/ closing dampers, dust buildup in the ductwork, damage to the ductwork and/or hoods.
  • Dust collection issues – such a plugged filters, old filters, holes in the filter, etc.
  • Damage to the exhaust fan – such as bearings, damaged impellers, etc.

Unlike liquids, there is no easy and inexpensive way to monitor airflow in a dust collection system.  The most common way is to periodically manually measure the airflow by inserting a pitot tube in the ductwork and measuring the air velocity.  The airflow is then calculated.

One option to monitor your airflow is to install a cyclone pre-filter ahead of the filters.  A cyclone’s pressure drop increases as the airflow increases in them.  Usually the manufacturer of the cyclone can provide a curve, showing the relationship between the pressure drop and the airflow.  So if you monitor the pressure drop through the cyclone, you will notice if the airflow suddenly increases or decreases.  And if the pressure drop drifts too far from a certain pressure drop you will know to troubleshoot the system.

To learn more about the different types of Dust Collection methods,  please contact our experts at 440-543-7400 or click on the button below to get our whitepaper: Top 5 Questions To Ask When Considering A Cyclone Dust Collector.

Get Whitepaper 

 

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, pre-filter, dust collection system efficiency, maintaining air valves, splitScream Cyclone

The Effects of Humidity & Compressed Air on Dust Collectors

Posted by Tom Hobson on Jan 29, 2019 8:57:26 AM

Dry dust collectors and humidity don’t react well together.  Baghouses and cartridge collectors operate by having dirty (dusty) air enter the housing.  Multiple filters (bags or cartridges) are located in the housing.  The air travels through the filter and then exits the dust collector.  The filters are a mesh of fibers that allow air to travel through small holes, while dust is too large to pass.  The dust builds up a layer (dust cake), further limiting the subsequent dust’s ability to pass through while allowing the air to pass.  From time to time the dust collector will clean the filters by shaking them or using compressed air to expand them.  This causes the outer layer of the dust cake to fall off.

Humidity can cause problems in the process described above.  Humidity is a way to express the amount of water in the air, (the higher the humidity, the higher the amount of water in the air).  When high humidity air enters a dust collector with fabric filters, there is a chance that the water vapor will condense and create water droplets or the dust on the filters will absorb the water as the airflow passes through.  Many dusts change their physical properties when the water content increases.  Some become sticky, some become hard like concrete, etc.  When this happens to the dust cake, it affects the ability of the air to pass through and the ability of the dust to fall off during cleaning.

When dust becomes sticky, it will adhere to neighboring dust particles and not want to fall during cleaning.  Dust that becomes hard (like concrete) will prevent air from passing through.  When one of these issues develop in a dust collector the pressure drop across the dust collector will increase.  Over time, an increased pressure drop will lower the airflow being pulled through the system.  This will decrease the airflow being picked up at hoods, therefore lowering dust collection at where operators are located.

Humidity can also be introduced in the dust collector in the compressed air.  When air is compressed, the temperature of the air increases, thereby increasing the water content of the air.  The compressed air is at its saturation point.  As the air moves through the line, it cools, thereby condensing water in the system.  If additional drying technology isn’t installed, the compressed air will have water droplets in it as it is used in the dust collectors.  This will cause the filter cake to wet and cause issues as described above.  This is why it is important to dry compressed air when dealing with dust that is affected by water.

However, sometimes no matter how you treat your compressed air, you continue to have issues.  This could be because the airline travels outside and in winter time it gets very cold. It could be because you are located near a large body of water, and humidity is high.  One way to minimize the effect on your dust collector is to minimize the dust getting to your dust collector.  Cyclone pre-filters are ideal for these applications.  Cyclones collect dust and water droplets using centrifugal motion.  This means they aren’t affected by the changes to the dust as a filter is.  Cyclone pre-filters can often remove up to 80% of the dust before a dust collector with filters.  This means you can lower the number of water droplets going into your dust collector and minimize the cleaning required, thereby not getting as much water from the compressed air system. 

To learn more about the different types of Dust Collection methods please contact our experts at 440-543-7400 or click on the button below to get our whitepaper, Top 5 Reasons to Use a Cyclone as a Pre-Filter.

Get Whitepaper 

 

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, pre-filter, dust collection system efficiency, maintaining air valves, splitScream Cyclone

The Benefits and Restrictions of Clamp Together Ductwork | Aerodyne

Posted by Tom Hobson on Jan 24, 2019 2:00:01 PM

The use of clamp together ductwork has increased over the past few years. There are multiple suppliers of clamp together ductwork which helps to keep the prices down. Clamp together ductwork is easy to design and install. 

The Benefits of Clamp Together Ductwork 

  • Easy to design - One of the main benefits of clamped ductwork is that extremely accurate measurements aren’t required. The clamp together ductwork allows you to adjust the length.  This makes installation of the ductwork much easier than standard flanged ductwork.  So when you are designing your ductwork, you just sketch the ductwork out.  From the sketch you figure out the pieces that you require and then order them from your preferred supplier.
  • Easy to transport - Clamp together ductwork is also easier to transport, as the ductwork usually comes in 5 foot sections.
  • Easy to install - When it comes time to install the ductwork, all you need to do is begin installing it and trim any pieces that are too long.
  • Ideal for mobile systems – Portable applications that require frequent disassembly and re-assembly.

The Restrictions of Clamp Together Ductwork

One thing to be aware of is that clamp together ductwork cannot be used as the ductwork between a dust collector and the no-return/ isolation valve.  NFPA specifications require that the ductwork be flanged together and strong enough to prevent a breach in case of an explosion.  This means when you are designing and installing the system, this ductwork needs to be ordered as flanged ductwork.  The no-return / isolation valve will have specifications on the distance it needs to be from the dust collector.  They may also have guidelines on elbows etc.  Most clamp together ductwork suppliers offer flanged ductwork too.  So you just need to order the required flanged ductwork when you are ordering the rest of your ductwork.

 

To learn more about which dust collector, please contact our experts at 440-543-7400 or click on the button below to get our Dust Collection System Evaluation Guide.

 

 

Get Your Guide 

Read More

Topics: dust collector, GPC Cyclone, dust collection system efficiency, clamp together ductwork

Cyclonic Dust Collection Can Reduce Fabric Filter Baghouse Maintenance Costs and Downtime

Posted by Tom Hobson on Dec 7, 2018 11:15:00 AM

At one time mechanical dust collectors were the industry standard in dust collection and air pollution control. However, with an ever increasing focus on air quality, EPA regulations regarding dust collection have steered the manufacturing world toward the higher efficiency capabilities of fabric filter baghouses, cartridge filters, and other dust collection equipment utilizing filter media. This change has undoubtedly helped to reduce the amount of harmful emissions released into the atmosphere in manufacturing processes. Unfortunately, the use of these fabric filter baghouse collectors is not without cost. The limitations of filter media such as moisture, heat, and high particulate volumes have added to the challenges of successful dust collection. Additionally, the high cost of bag or cartridge replacement, maintenance issues, and expensive pulse-jet controls to clean filter media can add up. The solution to these headaches for many has been the use of mechanical dust collectors before final-stage filtration.

Mechanical dust collectors use a cyclonic air flow to separate particulate from an air stream. The centrifugal force created by the rotary flow throws the dust out of the air stream and toward the walls of the collector. In a typical cyclone, the particulate strikes the wall of the collector and falls to a hopper below for collection. Cleaned air is then vented through the top of the collector. While this form of collection can be highly efficient in dealing with large, dense particulate, extremely fine dust lacks the inertia to escape the air stream and is subsequently carried out with the cleaned air. Some high efficiency cyclones like the Aerodyne 'S' Series, use two air streams, to more efficiently separate the dust. The Aerodyne's powerful secondary air stream intercepts the particulate before it contacts the side wall, reducing wear when handling abrasive materials. This secondary air stream also helps to sustain the cyclonic action inside the collector, thereby increasing its efficiency.

 

Filter media dust collectors such as baghouses and cartridge filters use a fine filter media to remove dust from an air stream. The dust-laden air is drawn into the collector where it passes through the filter media and particulate is intercepted. Dust builds up on the filter until it is cleaned or replaced. Cleaned air is then vented out of the collector.

Many manufacturing processes involve circumstances that make it very difficult to rely completely on a baghouse. Heavy dust loading can be a maintenance nightmare for a filter media collector. A rock crushing operation based out of Minnesota realized the benefits of placing a cyclonic dust collector before its baghouse. The enormous amount of rock dust generated in the crushing operation was blinding the bags and causing frequent shutdowns. The decision was made to install a cyclonic dust collector to receive the dust before being sent through the bag house. The cyclone captured the vast majority of the rock dust, leaving only a small amount of fine particulate for the bag house to handle. The cost of the additional equipment was quickly recovered through fewer shutdowns and less frequent bag replacement.

Processes involving high temperature exhaust gas also plague filter media collectors. The hot air temperatures exhausted from foundries, glass making plants, and power plants can burn the filter media used by most baghouses. While high temperature filter bags and cartridge filters are available, they can be an expensive addition and are still not completely immune to the heat. Used as a spark arrestor, a cyclonic dust collector can be placed before a bag house to both reduce the temperature of the air stream and the particulate loading before it enters a final stage filter.

While a mechanical dust collector may not be necessary in every application, the benefits that can be gained from this proven technology are evident. As emission standards become more stringent and process costs continue to rise, any advantage that can be taken should be considered. By comparing process costs such as materials, labor, and downtime with the expense of a cyclone, a decision can be made as to the need for such equipment.

To learn more about the different types of Dust Collection methods please contact our experts at 440-543-7400 or click on the button below to get our whitepaper, Not Your Grandfather's Cyclone. 

Get Whitepaper

 

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, pre-filter, dust collection system efficiency, maintaining air valves, splitScream Cyclone

Prevent Filter Fires with Proper System Design

Posted by Tom Hobson on Nov 29, 2018 11:00:00 AM

Dust collection system design can be a very complicated process. Beyond determining variables such as air volumes, drop sizes, and capture velocities, there is perhaps no more important design consideration than fire prevention. This is especially true in systems that are used in hot work applications, such as sawing, grinding, or sanding, where sparks can potentially be generated. If a spark is drawn into a system’s ductwork, it has the possibility of travelling all the way to the system filters which are typically constructed of combustible materials. If this happens, the filters can catch on fire, which can lead to catastrophic destruction of the dust collection system, the entire building, or result in serious injury or loss of life.

Any well thought out system will take this scenario into consideration and incorporate preventive measures to reduce the likelihood of this happening. Installing a spark arrestor in the duct work before the baghouse is a method that is commonly used to reduce fire risk. Spark arrestors vary in design, but most of them are designed with the intent of slowing the spark down, allowing it to cool down and burn out before it can do any damage to the baghouse or cartridge collector.

Another option is incorporating a pre-filter cyclone before the fabric filters. A cyclone works on the same principle when it comes to spark arresting, using centrifugal force to direct any sparks to the cylindrical surface of the cyclone, spinning them along the metal walls of the cyclone where they are drained of their energy via conduction. The cyclone has the added benefit of removing the majority of heavier particulate before it reaches the filters, which alleviates overall system loading.

The ongoing emphasis by OSHA and NFPA on combustible dusts and dust collection systems in general means that regulatory compliance will become increasingly important for any facility that uses dust collectors.  Prevention and suppression devices such as sprinklers in the ductwork, explosion vents, chemical suppression systems, and pre-filter cyclones can all be used to reduce and possibly eliminate the risk of fire. The type of dust being collected, the combustibility of the dust, dust particle size, and filter construction are among the factors that must be considered when selecting the appropriate fire protection for your system.

Which prevention or suppression system does your dust collection system need? Asking that question is the first step in protecting your system, your facility, and the people who work in your facility.

To learn more about how Aerodyne can help you keep your dust collection filter cleaning system operating efficiently,  please contact our experts at 440-543-7400 or click on the button below to get our whitepaper, Top 5 Reasons to Use a Cyclone as a Pre-filter.

Get Whitepaper

 

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, pre-filter, dust collection system efficiency, maintaining air valves

Avoid Filter Failure by Using a Pre-Filter Cyclone

Posted by Tom Hobson on Nov 27, 2018 2:30:00 PM

Because of their overall effectiveness and reliability, baghouses and cartridge collectors are the most widely used dust collectors in industry today. The filters in these systems are very effective at capturing several types of particulate matter and have the benefit of being able to be regularly cleaned, which keeps overall system efficiency at peak levels.

But, some types of dusts can prove to be problematic for filters. For instance, fibrous dusts, such as those generated in paper or textile processing facilities, can become embedded in filter media and fail to release during cleaning cycles. Wet or sticky dusts that are common in food processing applications or in facilities with high humidity can provide similar challenges with wet or sticky particulate material becoming caked on the filter surfaces. Many types of filter media are also adversely affected by being exposed to moisture because it may cause the filter to degrade rapidly, allowing holes to develop.

With so much of the efficiency of a dust collector relying on the integrity of its filters, any circumstance that might allow the filters to become impeded with wet, sticky, or fibrous material needs to be prevented. If not, the entire system will experience higher pressure drops, lower airflows, decreased efficiency, and possibly lead to unsafe working conditions or violations of air emission permits.

One proven method of keeping filters from becoming impeded by problematic dusts is to install a pre-filter cyclone in the dust collection system. The cyclone is designed to remove larger, heavier dust, while allowing smaller particles to pass through the cyclone and through the filters. In many applications, 80-90% of the particulate matter entering the cyclone is removed, which is a significant reduction in overall system loading. This is especially true when dealing with wet, sticky, or fibrous dust.  With this decreased volume of dust reaching the filters, filter life is extended, with cleaning and replacement needed less frequently. This means reduced maintenance cost while sustaining optimal operating efficiency.

To learn more about pre-filter cyclones, click on the button below.

Learn More!

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, traditional cyclone, pre-filter, dust collection system efficiency

Ensure Dust Collection System Efficiency by Maintaining Air Valves

Posted by Tom Hobson on Oct 31, 2018 1:05:00 PM

For dust collection systems to operate as they are designed, baghouse and cartridge collector filters need to be regularly cleaned.  Many systems employ compressed air for this purpose, periodically sending blasts of air through the filters which effectively removes particulate matter from them. The frequency of these cleaning cycles can be controlled by various methods, such as a pressure drop monitor that allows for detection of a filter that is beginning to clog, or with a simple timer. Air flow is typically controlled with the use of a solenoid operated diaphragm valve.

These valves are the critical component in keeping a system operating at peak efficiency. A valve that is stuck in the closed position or does not open when required will not allow the filters to be cleaned, which will result in an overloaded system that could potentially allow higher than expected levels of particulate to be discharged into the atmosphere or lead to premature system failure due to increased loading.  Conversely, a valve that gets stuck in the open position will result in costly compressed air being constantly sent through the filters.

Maintaining the health of these valves is obviously an essential factor in promoting the long term effectiveness of a dust collection system. The simplest way to achieve this is by making sure that the valves are included in a preventive or predictive maintenance program, so that any issues can be addressed before they become major problems. More advanced systems provide continuous monitoring of valve operation, which can alert maintenance personnel to any problems with the valves or the system in general.

To learn more about how Aerodyne can help you keep your dust collection filter cleaning system operating efficiently,  please contact our experts at 440-543-7400 or click on the button below to watch Dust Collection System Maintenance Video.

Read More

Topics: dust collector, cartridge collector, horizontal cyclone, traditional cyclone, pre-filter, dust collection system efficiency, maintaining air valves

Aerodyne Environmental: Home of the Horizontal Cyclone and  Vacu-Valve® Airlock Valve

Inspired To Be Different.

At Aerodyne, we choose to take a different approach to collecting dust and handling materials. Our cyclones are unique in design to address common issues such as problematic dusts and space constraints. Our airlocks are chosen to fit your specific application instead of hastily installing traditional equipment options. We believe that when we see things differently, we can solve problems effectively. That's why so many people turn to us for help in solving their tough dust problems.

Subscribe Here!

Recent Posts

Posts by topics

See all